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Skin requirements
. Requirement: High out-of-plae stiffness
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Force: Actuation force
Requirement : low in-plane stiffness
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[GATO@ morphing aircraft skins

Geometrically Anisotropic ThermOplastic Rubber morphing skin design principles

Exploiting Geometric and
Structural Scaling Laws

Thermoplastic Elastomers Multi-Material 3D Printing
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MATLAB Input variables and

model setup parameters
GMSH to generate 2D and 3D
shape and mesh
ABAQUS to solve FEA model
MATLAB to post-process data
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Model validation: Out-of-plane response
| _ -

1 : 1 1
Experimental Youngs Modulus from I
membrane experiments was used e 4 ( }
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— [Iyper-Elastic Skin Properties [Moonev-Rivlin
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] . o 1 0 i
Crosshead Displacement ||
Mooney-Rivlin constants Linear elastic material properties ~ :
u2 [Mpa] E (Experimental, Membrane) : - '
0.5034 3.1410 22.9 MPa 0.46 |
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Model validation: In-plane response

Moonei-

0.5034
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Experimental 1% Cyele
— [ inear lastic Skin Properties

Hyper-Elastic Skin Properties ( Moonesy-Rivlin)

1.2 1.3 1.4 1.5 1.6

Rivlin constants

27 May 2022

Stretch Ratio [A]

Linear elastic material properties
E (Experimental, Membrane )

22.9 MPa 0.46
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Future work

 Detailed design space analysis of a sandwich panel using standard MorphCore
* Implement proposed permutations

00 000

* Optimise panel for a specific morphing skin application
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What is WrapToR Truss?

Wrapped Tow Reinforced Truss
3 longitudinal/chord members —
e Pultruded Composite tubes
Shear members —
e ContinuousResin Wetted Fibre
* Adaptedfilament winding technique

3-point bend test comparison against pultruded composite tubes (7 & 8 mm carbor} 4
1. 7% greater mass, 1006% stiffness increase, 181% greater load carrying |
2. 9% smaller mass, 537% stiffness increase, 133% greater load carrying

Tow Twisting Improvementsin large profiletruss
1. 51% increase inload carrying
2. 10% increase in stiffness
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WrapToR Truss Stiffened Skin Panels

Objective: Characterise and optimise the application of the

WrapToR truss concept as a reinforcement member for
structural panels

» Combination of composites with mass efficient structures
 Utilise continuous carbon fibre construction
* Potential applications in range of scales
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Modelling and Analysis

e Sguare composite panel

2 trusses in cruciform

2 chord members removed

Line load along centre

Simply supported BC on two edges

Performance Metrics:
e Low Mass
« High Stiffness

Record Displacement along centre
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E\Wass

Effect of Shear Diamater on ENMass for dfarent Shasr Angles; ctc 0.04 m Chord Diamater 3,002 m

13 Large ctc
i Large Chord Diameter
408
2m
100 - Effoct of Shear Olnmetar on EMms for different Shanr Angles; 3¢ 0.1 m Choed Dismeter 0.01 m
W( -k wn

Shoar Anglo

Small ctc
Small Chord Diameter

100040

ElMVass
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Shear Ange
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3-Point Bend Test of Truss Bond Strength

17

o
Hanging Cure; w"w
Single Side Compression Cure; s

"&-
Double Side Compression Cure: s e, _;;g.;ﬁ
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Motivation: Tow-Steered Composites

« Steering of composite material tows produces non-constant fibre angle across a ply
« Variation in fibre angle allows for variable stiffness structures to redirect load paths and tailor mechanical response
» Proven benefits for stress redistribution and buckling performance

 Represents a step change in design potential
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Context: Continuous Tow Shearing

* In-plane shearing of material tows by Continuous Tow Shearing (CTS) along curvilinear reference eliminates
potential defects of Automated Fibre Placement (AFP) steering and allows perfect tessellation

» CTS process exhibits nonlinear orientation-thickness coupling of sheared tows due to material volume conservation

70 3 s
"""""" Reference Path [1] ey
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Results: Design Methodology

« Steer plies at differing directions to produce structural-level thickness build-up pattern
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Results: Laminated Plate Design

« Periodic ply-level thickness build-ups are laminated, where differential steering directi
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Results: Laminated Shell Design

« Conventional aerospace stiffening schemes can be embedded into monocoque structures
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Conclusions & Future Work

« Manufacturing influenced design methodology derived

« Significant structural design potential

* Rich solution space to explore 3
« Fast computational tools required for enabling iterative ﬁ
design 31
25,1
N =
* Meta-heuristics optimsiation will enable optimum design 4
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Motivations

3D Printed Internal Structure Designed by Topology Optimisation

Removal of Female Mould Innovative Design to Reduce Weight
Faster Blade Production Reduced Gravitational and Inertial Loads
Additional Design Freedom Longer Lifespan

Larger Installed Capacity of Wind Energy
Lower Levelized Cost of Energy
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Design Methodology: Challenges

Aeroelastic Design Requirements
* Aero-servo-elastic optimisation is key to improving the & s

structural efficiency of wind turbine blades ﬁ
* Topology optimisation is difficult to use in combination

with other design methods

* A combination of composite laminates and printed
structure is required for optimal design

* A single stage optimisation using off-the-shelf solvers
cannot provide the detailed design which is necessary

Multi-Material Topology Optimisation https: /fwww.dtu.dk
// ’

for manufacturing
.% Umumt‘v of Elic University of
& BRISTOL ey o BREIOL

Research Council EF’SRCC ntre for Doctor: |

g Composites Scie
Bristol Composites Institute Eg ing and Manufactur g




Design Methodology: Aeroelastic Design ”

Aeroelastic

oelas Aeroelastic » Evaluate maximum load envelopes and
Optimisation

Optimisation corresponding displacementdistributions

Computational

Topology * Apply load envelopes
POIOY 1oz
Optimisation ggﬁsﬂgmcement

Approximate Result

Feasible Computational
Expense

Accurate Result

Impractical Computational
Expense

% UﬂlVC!’Slty Of E}l{fl §I1t‘V oi
\J I ngineering an
m BRISTOL & Eh)g/sical chiencdes S O

Research Council EPSRC Centre for Doctoral

Training in Composites Science,
Bristol Conm Institute Engineering and Manufacturing




Design Methodology: Multiple Materials

First Stage: Laminate Design

1. Ildentify main load paths
2. Extract iso-surface
3. Size optimisation

-
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Second Stage: Lattice Design

1. Freeze laminate region
2. Find optimal lattice configuration
3. Convert density field values
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